The 98 KPPY Combinatorics Seminar

Organized by S. Bang, J. Park, and M. Siggers

Apr 06, 2024

KNU

Building 209, Room 313

Program

11:30 - 12:30 **Seunghun Lee** KAIST Constructions of geometric hypergraphs with high chromatic number and transversal ratio

 $12{:}30 {\rm \ Lunch}$

2:00 - 2:50 **Victor Dalmau** University Pompeu Fabra Right-adjoints of Datalog Programs

3:00 - 3:50 **Rutger Campbell** IBS Counting well-quasi-ordered down-sets

4:00 - 4:50 **Eun-Kyung Cho** Hanyang University On the Interval Coloring Impropriety of Graphs

5:00 **Banquet**

Abstracts

Seunghun Lee

Constructions of geometric hypergraphs with high chromatic number and transversal ratio

Given a hypergraph H = (V, E), we say that H is (weakly) *m*-colorable if there is a coloring $c : V \to [m]$ such that every hyperedge of H is not monochromatic. The (weak) chromatic number of H, denoted by $\chi(H)$, is the smallest m such that H is m-colorable. A vertex subset $T \subseteq V$ is called a transversal of H if for every hyperedge e of H we have $T \cap e \neq \emptyset$. The transversal number of H, denoted by $\tau(H)$, is the smallest size of a transversal in H. The transversal ratio of H is the quantity $\tau(H)/|V|$ which is between 0 and 1. Since a lower bound on the transversal ratio of H gives a lower bound on $\chi(H)$, these two quantities are closely related to each other.

We present constructions of geometric hypergraphs with high chromatic number and(or) transveral ratio. The ultimate conjecture on this line asks for a construction of *d*-polytopes for every $d \ge 4$ such that the supremum among the transversal ratios of the facet hypergraphs of those *d*-polytopes is eqaul to 1. As intermediate steps towards the conjecture, we will consider constructions regarding transversals and colorings coming from various types of simplicial complexes - neighborly spheres, simplicial complexes which are piecewise-linearly (or geometrically) embeddable in \mathbb{R}^d and so on.

This presentation is based on the two joint work; one with Joseph Briggs and Michael Gene Dobbins, and the other with Eran Nevo.

Victor Dalmau Right-adjoints of Datalog Programs

We say that two functors Λ and Γ between thin categories of relational structures are adjoint if for all structures A and B, we have that $\Lambda(A)$ maps homomorphically to B if and only if A maps homomorphically to $\Gamma(B)$. If this is the case Λ is called the left adjoint to Γ and Γ the right adjoint to Λ . In 2015, Foniok and Tardif described some functors on the category of digraphs that allow both left and right adjoints. The main contribution of Foniok and Tardif is a construction of right adjoints to some of the functors identified as right adjoints by Pultr in 1970. We shall present several recent advances in this direction including a new approach based on the notion of Datalog Program borrowed from logic.

Rutger Campbell Counting well-quasi-ordered down-sets

For a poset arising from combinatorial objects under some substructure relation, we characterize when there are (un)countably-many well-quasi-ordered down-sets.

This is based on joint work with Dillon Mayhew (University of Leeds).

Eun-Kyung Cho On the Interval Coloring Impropriety of Graphs

An improper interval (edge) coloring of a graph G is an assignment of colors to the edges of G satisfying the condition that, for every vertex $v \in V(G)$, the set of colors assigned to the edges incident with v forms an integral interval. An interval coloring is k-improper if at most k edges with the same color all share a common endpoint.

The minimum integer k such that there exists a k-improper interval coloring of the graph G is the *interval coloring impropriety* of G, denoted by $\mu_{int}(G)$. In this talk, we determine improved upper bounds on the interval coloring impropriety of several classes of graphs, namely 2-trees, iterated triangulations, and outerplanar graphs. Additionally, we investigate the interval coloring impropriety of the corona product of two graphs, $G \odot H$. Finally, we provide a construction of an interval coloring of a subclass of complete multipartite graphs. This provides additional evidence to the conjecture by Casselgren and Petrosyan that $\mu_{int}(G) \leq 2$ for all complete multipartite graphs G.

This is a joint work with MacKenzie Carr, Nicholas Crawford, Vesna Iršič, Leilani Pai, and Rebecca Robinson.