The 28th PNU-POSTECH Algebraic Combinatorics Workshop

Organized by M.Hirasaka and J.Koolen

November 15, 2008

Date November 15, 2008
Place C32-211, Department of Mathematics in Pusan National University Program

10:30-11:20, Suyoung Choi (KAIST)
Combinatorics on bigraded Betti numbers of simple polytopes
11:30-12:20, Hidefumi Kawasaki (Kyushu University)
Discrete xed point theorems and their applications to the game theory
14:00-14:50, Kyoung Ho Park (Kyungpook National University), On the distribution of Genocchi polynomials

15:00-15:50, Jungwook Lim (POSTECH),
Zero-divisor graphs of polynomials and power series over commutative rings
16:10-17:00, Soohak Choi (POSTECH),
The new lower bounds on covering arrays
17:10-18:00, Jong Yoon Hyun (POSTECH),
The isometry group of an arbitrary poset-metric space
19:00-21:00, Banquet (free of charge)

Available Devices for Presentation
We strongly encourage speakers to give a classical styled talk with chalk and blackboard. However, one beam projector is equipped at C32-208.
Important Notice In principle, each participant has to give comments or questions at least twice during the seminar.

Speaker: Suyoung Choi
Title: Combinatorics on bigraded Betti numbers of simple polytopes Abstract: A polytope P is called simple if there are exactly n facets meeting at each vertex of P . Assume that P has m facets. The main object of this talk is the bigraded Betti numbers which appear in a minimal free resolution of face ring of a simple polytope P over a polynomial ring with m variables. These numbers are quite related to the combinatorics of simple polytopes including the sum of connected components for all choices of k facets in P, denote $c_{k}(P)$. One of the most important remarks is the following; the $(k-1 ; k)$-th Betti number $b_{k}(P)$ of P is

$$
\mathrm{b}_{\mathrm{k}}(\mathrm{P})=\mathrm{c}_{\mathrm{k}}(\mathrm{P})+\binom{\mathrm{m}}{\mathrm{k}}
$$

$:$
m3

In this talk, we established the formula of b_{k} of a connected sum of simple polytopes P and Q. The formula shows that $b_{k}(P \# Q)$ is dependent only on P and Q but the base eld k and how they connected. Using this, we can compute purely combinatorially the b_{k} of stacked polytopes of dimension n and prisms of dimension 3.
On the other hand, we investigate the maximality of bigraded Betti numbers of 3 -dimensional stacked polytopes and prisms. A polytope is called irreducible if it can not be represented by a connected sum of several polytopes.
Problem Let P be a polytope of dimension 3 with m facets and let ${ }_{m-3}$ and $P(m-2)$ be a stacked $3-$ polytope and a $3-$ prism which have m facets, respectively. Then, for any k , we have the inequality

$$
\mathrm{b}_{\mathrm{k}}(\mathrm{P})< \begin{cases}\mathrm{b}_{\mathrm{k}}(\mathrm{P}(\mathrm{~m}-2) ; & \text { if } \mathrm{P} \text { is irreducible; } \\ \mathrm{b}_{\mathrm{k}}\left({ }_{\mathrm{m}-3}\right) ; & \text { otherwise. }\end{cases}
$$

We give a non-trivial armative solution of Problem ?? for $\mathrm{k}=\mathrm{m}-4$.
Also we prove that the equality holds if and only if P is a such polytope. As a corollary, we prove that every prism is cohomologically rigid. This work is jointly with Jang Soo Kim.

Speaker: Hidefumi Kawasaki (Kyushu University)
Title: Discrete xed point theorems and their applications to the game theory
Abstract: In bimatrix game, there are two players P_{1} and P_{2}. Player P_{1} has m choices (pure strategies), and player P_{2} has n choices. When P_{1} and P_{2} respectively choose $\mathrm{i}-$ th pure strategy and j -th pure strategy, they respectively gain $\mathrm{a}_{\mathrm{ij}} 2 \mathrm{R}$ and $\mathrm{b}_{\mathrm{ij}} 2 \mathrm{R}$, and each player maximize his/her gain. Here, matrices $\mathrm{A}:=\left(\mathrm{a}_{\mathrm{ij}}\right)$ and $\mathrm{B}:=\left(\mathrm{b}_{\mathrm{ij}}\right)$ are called payoff matrices.

In order to find a solution (equilibrium, strategies) that both players satisfy, we need mixed strategies, that is, both players throw dice to decide their strategies. Then the bimatrix game is formulated as follows:

$$
\left(P_{1}\right) \max _{x 2 S_{\mathrm{m}}} x \tau A y ; \quad\left(P_{2}\right) \max _{\mathrm{y} 2 \mathrm{~S}_{\mathrm{n}}} x T B y ;
$$

where $\mathrm{S}_{\mathrm{m}}:=\left\{\mathrm{x}=\left(\mathrm{x} ;::: ; \mathrm{x}_{\mathrm{m}}\right) 2 \mathrm{Rm} ; \mathrm{x} 08 \mathrm{i} ; \mathrm{x}_{1}=1\right\}$, and there exist $\mathrm{x} 2 \mathrm{~S}_{\mathrm{m}}$ and y 2 S such that

$$
\text { xт } A y<x t A y 8 x 2 S_{m} \quad \text { xt By } \quad \text { xt By } 8 y 2 S_{n}
$$

Such a pair (x ; y) is called a Nash equilibrium. Nash proved his claim by Brouwer's fixed point theorem: Any continuous mapping from a compact convex set $\mathrm{C} \mathrm{R}_{\mathrm{n}}$ into itself has a fixed point.
The aim of this talk is to introduce the recent developement of discrete xed point theorems and their applications to the game theory.

Speaker: Kyoung Ho Park (Kyungpook National University)
Title: On the distribution of Genocchi polynomials
Abstract: In this talk, we introduce Genocchi numbers and polynomials. Firstly, we study the distribution of Genocchi polynomials. Secondly, we investigate the symmetry for the distribution of twisted q-Genocchi numbers and polynomials associated with the fermionic p -adic invariant integral on Z

Speaker: Jungwook Lim
Title: Zero-divisor graphs of polynomials and power series over commutative rings
Abstract: Let R be a commutative ring with identity and $\mathrm{Z}(\mathrm{R})$ (resp.
$Z(R)$ the set of zero- divisors (resp. nonzero zero-divisors) of R. By the zero-divisor graph of R, denoted by (R), we mean the graph whose vertices are the nonzero zero-divisors of R, and for distinct r; s $2 Z(R)$, there is an edge connecting r and s if and only if rs $=0$. In this talk, I will talk about diameter and girth of (R); (R[X]) and (R[[X]]).

Speaker: Soohak Choi

Title: The new lower bounds on covering arrays
Abstract: Let $\mathrm{B}_{\mathrm{q}}=\{0 ; 1 ;::: ; \mathrm{q}-1\}$ be a set with q elements. An $\mathrm{m} * \mathrm{n}$
matrix C over B_{q} is called a t-covering array (or, a covering array of size m,
strength t , degree n , and order q) if, in any t columns of C , all qt possible q-ary t-vectors occur at least once. It is one of the main problem in the theory of covering arrays to find the minimum size $g_{t}(n)$ of a t-covering array of given degree n. The main problem was completely solved only for the case $t=2$ and $q=2$. Roux gives two useful bounds.
$g_{t+1}(n+1) \underset{t}{2}(n) ; g_{3}(2 n) g_{3}(n)+g_{2}(n)$: We will give the better bound.

Speaker: Jong Yoon Hyun (POSTECH),
Title: The isometry group of an arbitrary poset-metric space Abstract: In this talk, I give a complete description of isometries of an arbitrary poset-metric space and present the structure of the isometry group as well as its size. The computation of its size for a special type of poset-metric spaces which were well-studied in the literature is also given.

