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Speaker: Suyoung Choi
Title: Combinatorics on bigraded Betti numbers of simple polytopes
Abstract: A polytope P is called simple if there are exactly n facets
meeting at each vertex of P. Assume that P has m facets. The main object
of this talk is the bigraded Betti numbers which appear in a minimal free
resolution of face ring of a simple polytope P over a polynomial ring with
m variables. These numbers are quite related to the combinatorics of

simple polytopes including the sum of connected components for all choices
of k facets in P , denote c

k(P ). One of the most important remarks is the

following; the (k - 1; k)-th Betti number b

k

(P ) of P is

b

k

(P) = c
k (P ) + (    )

m

k

:

In this talk, we established the formula of b
k
of a connected sum of simple

polytopes P and Q. The formula shows that b

k

(P#Q) is dependent only on

P and Q but the base eld k and how they connected. Using this, we can
compute purely combinatorially the b

k

of stacked polytopes of dimension n

and prisms of dimension 3.
On the other hand, we investigate the maximality of bigraded Betti
numbers of 3-dimensional stacked polytopes and prisms. A polytope is
called irreducible if it can not be represented by a connected sum of several
polytopes.

Problem Let P be a polytope of dimension 3 with m facets and let

m3

and P(m-2) be a stacked 3-polytope and a 3-prism which have m facets,
respectively. Then, for any k, we have the inequality

bk(P )<{b
k

(P (m - 2); if P is irreducible;

bk (

m-3

); otherwise.

We give a non-trivial armative solution of Problem ?? for k = m-4.
Also we prove that the equality holds if and only if P is a such polytope.
As a corollary, we prove that every prism is cohomologically rigid. This
work is jointly with Jang Soo Kim.
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Speaker: Hidefumi Kawasaki (Kyushu University)
Title: Discrete xed point theorems and their applications to the
game theory

Abstract: In bimatrix game, there are two players P

1

and P

2

. Player P
1
has

m choices (pure strategies), and player P
2

has n choices. When P

1

and P

2

respectively choose i-th pure strategy and j-th pure strategy, they
respectively gain a

ij

2 R and b

ij

2 R, and each player maximize his/her

gain. Here, matrices A := (a

ij

) and B := (b

ij

) are called payoff matrices.

In order to find a solution (equilibrium, strategies) that both players satisfy,
we need mixed strategies, that is, both players throw dice to decide their

strategies. Then the bimatrix game is formulated as follows:

(P

1

) max
x2Sm

xTAy;(P
2) max

y2S
n

xTBy;

where S

m

:= {x = (x
1

; : : : ; x

m

) 2 Rm ; x 0 8i; x

1

= 1}, and there

exist x 2 S

m

and y 2 S

n

such that

xT Ay < xT Ay 8x 2 S

m

xT By  xT By 8y 2 S

Such a pair (x; y) is called a Nash equilibrium. Nash proved his claim by
Brouwer's fixed point theorem: Any continuous mapping from a compact
convex set C  Rn into itself has a fixed point.
The aim of this talk is to introduce the recent developement of discrete
xed point theorems and their applications to the game theory.

Speaker: Kyoung Ho Park (Kyungpook National University)
Title: On the distribution of Genocchi polynomials

Abstract: In this talk, we introduce Genocchi numbers and polynomials.
Firstly, we study the distribution of Genocchi polynomials. Secondly, we
investigate the symmetry for the distribution of twisted q-Genocchi
numbers and polynomials associated with the fermionic p-adic invariant
integral on Z

Speaker: Jungwook Lim
Title: Zero-divisor graphs of polynomials and power series over
commutative rings
Abstract: Let R be a commutative ring with identity and Z(R)(resp.
Z(R) the set of zero- divisors(resp. nonzero zero-divisors) of R. By the
zero-divisor graph of R, denoted by (R), we mean the graph whose
vertices are the nonzero zero-divisors of R, and for distinct r; s 2 Z(R),
there is an edge connecting r and s if and only if rs = 0. In this talk, I will
talk about diameter and girth of (R); (R[X]) and (R[[X]]).



Speaker: Soohak Choi
Title: The new lower bounds on covering arrays
Abstract: Let B

q
= {0; 1; : : : ; q-1} be a set with q elements. An m * n

matrix C over B
q is called a t-covering array (or, a covering array of size m,

strength t, degree n, and order q) if, in any t columns of C, all qt possible
q-ary t-vectors occur at least once. It is one of the main problem in the

theory of covering arrays to find the minimum size g

t

(n) of a t-covering

array of given degree n. The main problem was completely solved only for
the case t = 2 and q = 2. Roux gives two useful bounds.

g
t+1

(n + 1)  2g

t

(n); g
3
(2n)  g

3
(n) + g

2
(n): We will give the better bound.

Speaker: Jong Yoon Hyun (POSTECH),
Title: The isometry group of an arbitrary poset-metric space
Abstract: In this talk, I give a complete description of isometries of an
arbitrary poset-metric space and present the structure of the isometry
group as well as its size. The computation of its size for a special type of
poset-metric spaces which were well-studied in the literature is also given.
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