KPPY 86

Jan Kim, Sho Suda, O-joung Kwon, Alexander Gavrilyuk, Ringi Kim

KPPY 86

May 04, 2018 (Friday). 11:00am-6:00pm at PNU

Schedule
11:00am - 11:50 Jan Kim
Pusan National University
On the Construction of Non-residually Finite Direct Limit of Finitely Presented Groups
12pm - 1:25 Lunch
1:30 - 2:20 Sho Suda
Aichi University of Education
On the Smith normal form of skew-symmetric D-optimal designs of order n2(mod4)n\equiv2\pmod{4}
2:30 - 3:20 O-joung Kwon
Incheon National University
Erdos-Posa property of induced objects
3:30 - 4:20 Alexander Gavrilyuk
Pusan National University
Non-existence of some small QQ-polynomial association schemes
4:30 - 5:20 Ringi Kim
KAIST
Subtournaments in Tournaments with large chromatic number

Abstracts



Jan Kim
On the Construction of Non-residually Finite Direct Limit of Finitely Presented Groups
A group GG is called residually finite if for each 1gG1 \neq g \in G, there is a finite group HH and a homomorphism φ:GH\varphi : G \rightarrow H such that φ(g)H1\varphi(g) \neq_H 1. It is a famous open problem whether every hyperbolic group is residually finite, and is commonly believed that a non-residually finite hyperbolic group exists.

Relatively hyperbolic groups which satisfy small cancellation conditions are closely related to hyperbolic groups. We construct a non-residually finite direct limit which satisfies small cancellation conditions C(4)&T(4)C(4)\&T(4), and consists of finitely presented relatively hyperbolic groups by using the upper presentations of 2-bridge link groups.
Sho Suda
On the Smith normal form of skew-symmetric D-optimal designs of order n2(mod4)n\equiv2\pmod{4}
The Smith normal form in design theory is a useful invariant to distinguish designs of the same order.

Recently Armario partially determined the Smith normal form of a skew-symmetric D-optimal design of order n2(mod4)n\equiv 2\pmod{4}, and conjectured the remaining invariant factors.

In this talk, we prove his conjecture. This talk is based on joint work with Gary Greaves.
O-joung Kwon
Erdos-Posa property of induced objects
We say that a graph class C satisfies the Erdos-Posa property if there exists a function g only depending on C such that for every graph G and an integer k, either G contains k disjoint copies of graphs in C, or it contains a vertex set of size at most g(k) that hits all copies of graphs in C. We recently determined for many classes C whether C satisfies Erdos-Posa property or not for induced version. There are still many open problems, and we will see these in the talk.
Alexander Gavrilyuk
Non-existence of some small QQ-polynomial association schemes
We show non-existence of QQ-polynomial association schemes in some small open cases. To do so, we analyse certain linear Diophantine equations involving their triple intersection numbers to conclude that they are inconsistent. This approach was previously applied to PP-polynomial association schemes (i.e., distance-regular graphs) with vanishing some of their Krein parameters.

The talk is based on joint work (in progress) with Jano\v{s} Vidali.
Ringi Kim
Subtournaments in Tournaments with large chromatic number
A celebrated conjecture of Gyárfás and Sumner asserts that, for a forest FF and a complete graph KK, every graph not containing FF or KK as an induced subgraph has bounded chromatic number. A similar question for tournaments (a digraph whose underlying graph is a complete graph) can be asked. For which set H\mathcal{H} of tournaments, does every tournament not containing any member of H\mathcal{H} have bounded chromatic number? Such a set containing one tournament has been explicitly characterized by Berger et al. In this talk, we discuss such sets containing two tournaments.